A new look at compactness via distances to function spaces

B. Cascales

Universidad de Murcia http://webs.um.es/beca

Huelva, September 3-7, 2007 III International Course of Mathematical Analysis Andalucia

The co-authors

- W. Marciszesky, M. Raja and B. Cascales, *Distance to spaces of continuous functions*, Topology Appl. **153** (2006), 2303–2319.
- **C. Angosto** and B. Cascales, *Measures of weak* noncompactness in Banach spaces, Topology Appl. (2007).
- **C. Angosto** and B. Cascales, *The quantitative difference between countable compactness and compactness*, Submitted, 2007.
- **C. Angosto, I. Namioka** and B. Cascales, *Distances to spaces of Baire one functions*, Submitted, 2007.

1 The starting point...our goals

2 The results

- C(K) spaces: a taste for simple things
- Applications to Banach spaces
- Other applications and extensions

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. *A quantitative version of Krein's Theorem.*. Rev. Mat. Iberoamericana 21 (2005), no. 1, 237–248..
- A. S. Granero.
 An extension of Krein-Šmulian theorem.
 Rev. Mat. Iberoamericana 22 (2005), no. 1, 93–110.
- A. S. Granero, P. Hájek, and V. Montesinos Santalucía. *Convexity and w*-compactness in Banach spaces.* Math. Ann., **328, 4** (2004), 625-631.

• M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. A guantitative version of Krein's Theorem Rev. Main result • A. S. (Let *E* be a Banach space and let $H \subset E$ be a bounded An ext subset of F. Then Rev. N $\widehat{d}(\overline{co(H)}, E) \leq 2\widehat{d}(\overline{H}, E),$ • A. S. (Conve Math.

< ∃⇒

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem... Rev. N Main result
- A. S. C Let *E* be a Banach space and let $H \subset E$ be a bounded An ext subset of *E*. Then Rev. N $\widehat{d}(\overline{\operatorname{co}(H)}, E) \leq 2\widehat{d}(\overline{H}, E),$
- A. S. (*Conve*) Math.

 $d(co(H), E) \leq 2d(H, E),$

• closures are weak*-closures taken in the bidual E^{**} ;

A⊒ ▶ ∢ ∃

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. A guantitative version of Krein's Theorem Rev Main result
- A. S. (Let *E* be a Banach space and let $H \subset E$ be a bounded An ext subset of F. Then Rev. N ΄),

$$\widehat{\mathsf{d}}(\overline{\mathsf{co}(H)}, E) \leq 2\widehat{\mathsf{d}}(\overline{H}, E)$$

- A. S. (Conve₂ Math.
- closures are weak*-closures taken in the bidual E**: • $\widehat{d}(A, E) := \sup\{d(a, E) : a \in A\}$ for $A \subset E^{**}$;

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem.
 Rev. N Main result
- A. S. C Let *E* be a Banach space and let $H \subset E$ be a bounded An ext subset of *E*. Then Rev. N

$$\widehat{\mathsf{d}}(\overline{\mathsf{co}(H)}, E) \leq 2\widehat{\mathsf{d}}(\overline{H}, E),$$

 A. S. (*Conve*) Math.

closures are weak*-closures taken in the bidual E**;

- $\widehat{d}(A, E) := \sup\{d(a, E) : a \in A\}$ for $A \subset E^{**}$;
- $\widehat{d}(A, E) = 0$ iff $A \subset E$. Hence the inequality implies Krein's theorem (if *H* is relatively weakly compact then $\overline{co(H)}$ is weakly compact.)

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. *A quantitative version of Krein's Theorem.*. Rev. Mat. Iberoamericana 21 (2005), no. 1, 237–248..
- A. S. Granero.
 An extension of Krein-Šmulian theorem.
 Rev. Mat. Iberoamericana 22 (2005), no. 1, 93–110.
- A. S. Granero, P. Hájek, and V. Montesinos Santalucía. *Convexity and w*-compactness in Banach spaces.* Math. Ann., **328, 4** (2004), 625-631.

 M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. *A quantitative version of Krein's Theorem.*. Rev. Mat. Iberoamericana 21 (2005), no. 1, 237–248..

 M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. A quantitative version of Krein's Theorem.. Rev. Mat. Iberoamericana 21 (2005), no. 1, 237–248..

A⊒ ▶ ∢ ∃

...our goal

...goals

- < ≣ →

...our goal

...goals

A ■

æ

-≣->

...our goal

...goals

- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

A ■

3

...our goal

 $\hat{d} \leq \hat{d} \leq M\hat{d}$

...goals

- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

3

...our goal

...goals

- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

A (1) > (1) > (1)

-

...our goal

...goals

- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

tools

- new reading of the *classical*;
- for *C*(*X*) we use *double limits* used by Grothendieck;

▲ 同 ▶ | ▲ 臣 ▶

-

...our goal

 $\hat{d} \leq \hat{d} \leq M\hat{d}$

...goals

- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

tools

- new reading of the *classical*;
- for *C*(*X*) we use *double limits* used by Grothendieck;
- for B₁(X) we use the notions of fragmentability and σ-fragmentability of functions.

イロト イヨト イヨト イヨト

C(K) spaces: a taste for simple things Applications to Banach spaces Other applications and extensions

Distances vs. oscillations

イロン イヨン イヨン イヨン

C(K) spaces: a taste for simple things Applications to Banach spaces Other applications and extensions

Distances vs. oscillations

< ≣ >

C(K) spaces: a taste for simple things Applications to Banach spaces Other applications and extensions

Distances vs. oscillations

▲□ > ▲圖 > ▲ 圖 >

< ∃⇒

C(K) spaces: a taste for simple things Applications to Banach spaces Other applications and extensions

Distances vs. oscillations

Theorem

Let Y be a normal space ^a. If $f \in \mathbb{R}^{Y}$ is bounded, then

$$d(f,C_b(Y))=\frac{1}{2}\operatorname{osc}(f).$$

$$a[\operatorname{osc}(f) = \sup_{x \in Y} \operatorname{osc}(f, x)]$$

-

C(K) spaces: a taste for simple things Applications to Banach spaces Other applications and extensions

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then $d(f, C_b(Y)) = \frac{1}{2} \operatorname{osc}(f).$

A ■

C(K) spaces: a taste for simple things Applications to Banach spaces Other applications and extensions

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then $d(f, C_b(Y)) = \frac{1}{2} \operatorname{osc}(f).$ 1 It is easy to check that $d(f, C_b(Y)) \ge \operatorname{osc}(f)/2.$

A ₽

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then $d(f, C_b(Y)) = \frac{1}{2} \operatorname{osc}(f).$

- It is easy to check that $d(f, C_b(Y)) \ge \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathscr{U}_x family of neighb.

$$\operatorname{osc}(f) = \inf_{U \in \mathscr{U}_{x}} \sup_{y, z \in U} (f(y) - f(z))$$
$$\geq \inf_{U \in \mathscr{U}_{x}} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_{x}} \inf_{z \in U} f(z)$$

・ロト ・回ト ・ヨト

∢ ≣ ≯

3

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then $d(f, C_b(Y)) = \frac{1}{2} \operatorname{osc}(f).$

- It is easy to check that $d(f, C_b(Y)) \ge \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathscr{U}_x family of neighb.

$$\operatorname{osc}(f) = \inf_{U \in \mathscr{U}_{x}} \sup_{y, z \in U} \left(f(y) - f(z) \right)$$

$$\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z)$$

$$f_2(x) := \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z) + \frac{\operatorname{osc}(f)}{2}$$
$$\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} - \frac{\operatorname{osc}(f)}{2} =: f_1(x)$$

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then $d(f, C_b(Y)) = \frac{1}{2} \operatorname{osc}(f).$

- It is easy to check that $d(f, C_b(Y)) \ge \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathscr{U}_x family of neighb.

$$\operatorname{osc}(f) = \inf_{U \in \mathscr{U}_{x}} \sup_{y, z \in U} (f(y) - f(z))$$
$$\geq \inf_{U \in \mathscr{U}_{x}} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_{x}} \inf_{z \in U} f(z)$$

$$f_2(x) := \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z) + \frac{\operatorname{osc}(f)}{2}$$

 $\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} - \frac{\operatorname{osc}(f)}{2} =: f_1(x)$

Image: A □ > A

∢ ≣⇒

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then $d(f, C_b(Y)) = \frac{1}{2} \operatorname{osc}(f).$

- It is easy to check that $d(f, C_b(Y)) \ge \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathscr{U}_x family of neighb.

$$\operatorname{osc}(f) = \inf_{U \in \mathscr{U}_{\times}} \sup_{y, z \in U} (f(y) - f(z))$$
$$\geq \inf_{U \in \mathscr{U}_{\times}} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_{\times}} \inf_{z \in U} f(z)$$

3

 $f_2(x) := \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z) + \frac{\operatorname{osc}(f)}{2}$ $\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} - \frac{\operatorname{osc}(f)}{2} =: f_1(x)$

イロン イヨン イヨン イヨン

Squeeze h between f_2 and f_1 and $d(f, C_b(Y)) = ||f - h||_{\infty} = \operatorname{osc}(f)/2.$

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \leq \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \leq \gamma(H) \leq 2 \mathsf{ck}(H).$$

Image: A math a math

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \leq \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, \mathcal{C}(K)) \leq \gamma(H) \leq 2\,\mathsf{ck}(H).$$

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^K}, C(K))$$

Image: A math a math

The starting point...our goalsC(K) spaces: a taste for simple thingsThe resultsApplications to Banach spacesReferencesOther applications and extensions

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\operatorname{ck}(H) \leq \hat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \leq \gamma(H) \leq 2\operatorname{ck}(H).$

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^K}, C(K))$$

 $\gamma(H) := \sup\{|\lim_{n} \lim_{m} h_m(x_n) - \lim_{m} \lim_{n} h_m(x_n)| : (h_m) \subset H, (x_n) \subset K\},$ assuming the involved limits exist.

イロン イヨン イヨン イヨン

The starting point...our goalsC(K) spaces: a taste for simple thingsThe resultsApplications to Banach spacesReferencesOther applications and extensions

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\operatorname{ck}(H) \leq \hat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \leq \gamma(H) \leq 2\operatorname{ck}(H).$

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^K}, C(K))$$

 $\gamma(H) := \sup\{|\lim_{n} \lim_{m} h_m(x_n) - \lim_{m} \lim_{n} h_m(x_n)| : (h_m) \subset H, (x_n) \subset K\},$ assuming the involved limits exist.

If H is relatively countably compact in C(K) then ck(H) = 0

The starting point...our goals C(K) spaces: a taste for simple things The results Applications to Banach spaces Other applications and extensions

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$$

・ロト ・回ト ・ヨト ・ヨト

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H)$$

(b)

< □ > < □ > < □ > < □ > < □ > .

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(b)

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$$

in γ(H) replace sequences by nets.

・ロト ・回ト ・ヨト ・ヨト

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$$

(b) • in $\gamma(H)$ replace sequences by nets. • Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.

・ロト ・回ト ・ヨト ・ヨト
The starting point...our goals C(K) spaces: a taste for simple things The results Applications to Banach spaces References Other applications and extensions

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(*b*)

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

- in γ(H) replace sequences by nets.
 - Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
 - Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

・ロト ・回ト ・ヨト ・ヨト

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(b)

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$$

in γ(H) replace sequences by nets.

• Pick
$$f \in \overline{H}^{\mathbb{R}^n}$$
 and fix $x \in K$.

• Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

・ロト ・日本 ・モト ・モト

æ

• Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^{K} .

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(*b*)

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$$

- in γ(H) replace sequences by nets.
 - Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
 - Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

・ロト ・回ト ・ヨト ・ヨト

- Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^{K} .
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(b)

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$$

in γ(H) replace sequences by nets.

• Pick
$$f \in \overline{H}^{\mathbb{R}^{n}}$$
 and fix $x \in K$.

• Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^{K} .
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}
- We get

$$\lim_{\alpha}\lim_{\beta}f_{\beta}(x_{\alpha})=\lim_{\alpha}f(x_{\alpha})=z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

・ロト ・回ト ・ヨト ・ヨト

The starting point...our goals C(K) spaces: a taste for simple things The results Applications to Banach spaces References Other applications and extensions

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(b)

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$$

in γ(H) replace sequences by nets.

• Pick
$$f \in \overline{H}^{\mathbb{R}^n}$$
 and fix $x \in K$.

• Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

Take a net in H (f_β) → f in ℝ^K.
Assume (we can!) f(x_α) → z in ℝ

We get

$$\lim_{\alpha}\lim_{\beta}f_{\beta}(x_{\alpha})=\lim_{\alpha}f(x_{\alpha})=z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

・ロト ・日本 ・モト ・モト

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(b)

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$$

in γ(H) replace sequences by nets.

• Pick
$$f \in \overline{H}^{\mathbb{R}^n}$$
 and fix $x \in K$.

• Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in $H(f_{\beta}) \to f$ in \mathbb{R}^{K} .
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}
- We get

$$\lim_{\alpha}\lim_{\beta}f_{\beta}(x_{\alpha})=\lim_{\alpha}f(x_{\alpha})=z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

イロン イヨン イヨン イヨン

- Hence $\operatorname{osc}^*(f, x) = \lim_{\alpha} |f(x_{\alpha}) f(x)| = |z f(x)| \le \gamma(H);$
- In particular osc(f,x) ≤ 2γ(H) for every x ∈ K;

The starting point...our goals C(K) spaces: a taste for simple things The results Applications to Banach spaces References Other applications and extensions

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^{K} .
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}
- We get

$$\lim_{\alpha}\lim_{\beta}f_{\beta}(x_{\alpha})=\lim_{\alpha}f(x_{\alpha})=z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

・ロト ・回ト ・ヨト

< ≣ >

- Hence $\operatorname{osc}^*(f, x) = \lim_{\alpha} |f(x_{\alpha}) f(x)| = |z f(x)| \le \gamma(H);$
- In particular osc(f,x) ≤ 2γ(H) for every x ∈ K;
- $d(f, C(K)) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f, x) \leq \gamma(H).$

The starting point...our goals C(K) spaces: a taste for simple things The results Applications to Banach spaces References Other applications and extensions

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^{K} .
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}
- We get

$$\lim_{\alpha}\lim_{\beta}f_{\beta}(x_{\alpha})=\lim_{\alpha}f(x_{\alpha})=z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

・ロト ・回ト ・ヨト

< ≣ >

- Hence $\operatorname{osc}^*(f, x) = \lim_{\alpha} |f(x_{\alpha}) f(x)| = |z f(x)| \le \gamma(H);$
- In particular osc(f,x) ≤ 2γ(H) for every x ∈ K;
- $d(f, C(K)) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f, x) \leq \gamma(H).$

The starting point...our goals C(K) spaces: a taste for simple things Applications to Banach spaces Other applications and extensions

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^K we have that

 $\gamma(H) = \gamma(\operatorname{co}(H)),$

and as a consequence we obtain for $H \subset C(K)$ that

$$\widehat{d}(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 2\widehat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
 (1)

and in the general case $H \subset \mathbb{R}^{K}$

$$\widehat{d}(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 5\widehat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
 (2)

・ロト ・回ト ・ヨト

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^K we have that

 $\gamma(H) = \gamma(\operatorname{co}(H)),$

and as a consequence we obtain for $H \subset C(K)$ that

$$\widehat{d}(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 2\widehat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
 (1)

and in the general case $H \subset \mathbb{R}^{K}$

$$\hat{d}(\overline{\mathrm{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 5\hat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
 (2)

・ロト ・回ト ・ヨト

$$\hat{\mathsf{d}}(\overline{\mathrm{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq \gamma(\mathrm{co}(H)) = \gamma(H) \leq 2\mathsf{ck}(H) \leq 2\hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K))$$

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^K we have that

 $\gamma(H) = \gamma(\operatorname{co}(H)),$

and as a consequence we obtain for $H \subset C(K)$ that

$$\widehat{d}(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 2\widehat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
 (1)

and in the general case $H \subset \mathbb{R}^{K}$

$$\hat{d}(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 5\hat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
(2)

イロト イヨト イヨト イヨト

- $\hat{\mathsf{d}}(\overline{\mathrm{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq \gamma(\mathrm{co}(H)) = \gamma(H) \leq 2\mathsf{ck}(H) \leq 2\hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K))$
- When H ⊂ ℝ^K, we approximate H by some set in C(K), then use (1) and 5 appears as a simple

$$5 = 2 \times 2 + 1$$
.

The starting point...our goals The results References C(K) spaces: a taste for simple things Applications to Banach spaces Other applications and extensions

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

 $d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$

A (1) > A (1) > A

-∢ ≣ ≯

The starting point...our goals C(K) spaces: a taste for simple things Applications to Banach spaces Other applications and extensions

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

 $d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$

• It is easy to check that $d(f, \mathscr{A}^{C}(K)) \ge \operatorname{osc}(f)/2.$

- ∢ ≣ ▶

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

 $d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$

- It is easy to check that $d(f, \mathscr{A}^{C}(K)) \ge \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathscr{U}_x family of neighb.
 - $\delta > \operatorname{osc}(f) = \inf_{U \in \mathscr{U}_x} \sup_{y, z \in U} (f(y) f(z))$

<ロ> <同> <同> <同> < 同> < 同>

$$\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z)$$

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

 $d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$

It is easy to check that $d(f, \mathscr{A}^{C}(K)) \ge \operatorname{osc}(f)/2.$

2 For $x \in Y$, \mathscr{U}_x family of neighb.

$$\delta > \operatorname{osc}(f) = \inf_{U \in \mathscr{U}_x} \sup_{y, z \in U} (f(y) - f(z))$$

$$\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z)$$

3

$$f_{2}(x) := \sup_{U \in \mathscr{U}_{x}} \inf_{z \in U} f(z) + \frac{\delta}{2}$$
$$> \inf_{U \in \mathscr{U}_{x}} \sup_{y \in U} -\frac{\delta}{2} =: f_{1}(x)$$

イロト イヨト イヨト イヨト

Distances to spaces of affine continuous functions

3

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$$

 f_1 u. s. concave

- 1 It is easy to check that $d(f, \mathscr{A}^{C}(K)) \ge \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathscr{U}_x family of neighb.

$$\delta > \operatorname{osc}(f) = \inf_{U \in \mathscr{U}_x} \sup_{y, z \in U} (f(y) - f(z))$$

$$\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z)$$

$$f_2(x) := \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z) + \frac{\delta}{2}$$
$$> \inf_{U \in \mathscr{U}_x} \sup_{y \in U} - \frac{\delta}{2} =: f_1(x)$$

・ロト ・回ト ・ヨト

-∢ ≣ ≯

The starting point...our goals C(K) spaces: a taste for simple things Applications to Banach spaces The results References Other applications and extensions

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$$

- It is easy to check that $d(f, \mathscr{A}^{\mathcal{C}}(K)) \geq \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathcal{U}_x family of neighb.

$$\delta > \operatorname{osc}(f) = \inf_{U \in \mathscr{U}_x} \sup_{y,z \in U} (f(y) - f(z))$$

$$\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z)$$

$$f_2(x) := \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z) + \frac{\delta}{2}$$
$$> \inf_{U \in \mathscr{U}_x} \sup_{y \in U} -\frac{\delta}{2} =: f_1(x)$$

- < ∃ >

4 Squeeze *h* between f_2 and f_1 and $\|f-h\|_{\infty} < \delta/2.$ ロト・「日下・・日下

3

The starting point...our goals C(K) spaces: a taste for simple things The results Applications to Banach spaces Other applications and extensions

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$d(f,C(K)) = d(f,\mathscr{A}^{C}(K)).$$

 f_1 u. s. concave

Corollary

Let X be a Banach space and let B_{X^*} be the closed unit ball in the dual X^* endowed with the w*-topology. Let $i: X \to X^{**}$ and $j: X^{**} \to \ell_{\infty}(B_{X^*})$ be the canonical embedding. Then, for every $x^{**} \in X^{**}$ we have:

$$d(x^{**}, i(X)) = d(j(x^{**}), C(B_{X^*})).$$

イロト イヨト イヨト イヨト

Measures of weak noncompactness

Definition

Given a bounded subset H of a Banach space E we define:

$$\gamma(H) := \sup\{|\lim_n \lim_m f_m(x_n) - \lim_m \lim_n f_m(x_n)| : (f_m) \subset B_{E^*}, (x_n) \subset H\},\$$

assuming the involved limits exist,

$$\operatorname{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{w^*}, E),$$

$$\mathsf{k}(H) := \hat{d}(\overline{H}^{w^*}, E) = \sup_{x^{**} \in \overline{H}^{w^*}} d(x^{**}, E),$$

where the w^* -closures are taken in E^{**} and the distance d is the usual inf distance for sets associated to the natural norm in E^{**} .

イロト イヨト イヨト イヨト

Theorem

For any bounded subset H of a Banach space E we have:

$$ck(H) \le k(H) \le \gamma(H) \le 2ck(H) \le 2k(H)$$
$$\gamma(H) = \gamma(co(H))$$

For any $x^{**} \in \overline{H}^{w^*}$, there is a sequence $(x_n)_n$ in H such that

$$\|x^{**}-y^{**}\|\leq \gamma(H)$$

for any cluster point y^{**} of $(x_n)_n$ in E^{**} . Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $ck(H), k(H), \gamma(H)$

Theorem

For any bounded subset H of a Banach space E we have:

$$ck(H) \le k(H) \le \gamma(H) \le 2ck(H) \le 2k(H)$$
$$\gamma(H) = \gamma(co(H))$$

For any $x^{**} \in \overline{H}^{w^*}$, there is a sequence $(x_n)_n$ in H such that

$$\|x^{**}-y^{**}\|\leq \gamma(H)$$

for any cluster point y^{**} of $(x_n)_n$ in E^{**} . Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $ck(H), k(H), \gamma(H)$

 $\omega(H) := \inf\{\varepsilon > 0 : H \subset K_{\varepsilon} + \varepsilon B_E \text{ and } K_{\varepsilon} \subset X \text{ is } w\text{-compact}\},\$

Theorem

For any bounded subset H of a Banach space E we have:

$$\mathsf{ck}(H) \leq \mathsf{k}(H) \leq \gamma(H) \leq 2 \, \mathsf{ck}(H) \leq 2 \, \mathsf{k}(H) \leq 2 \, \omega(H),$$

 $\gamma(H) = \gamma(\operatorname{co}(H))$ and $\omega(H) = \omega(\operatorname{co}(H))$.

For any $x^{**} \in \overline{H}^{w^*}$, there is a sequence $(x_n)_n$ in H such that

$$\|x^{**}-y^{**}\|\leq \gamma(H)$$

for any cluster point y^{**} of $(x_n)_n$ in E^{**} . Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $ck(H), k(H), \gamma(H)$ and $\omega(H)$.

 $\omega(H) := \inf\{\varepsilon > 0 : H \subset K_{\varepsilon} + \varepsilon B_E \text{ and } K_{\varepsilon} \subset X \text{ is } w\text{-compact}\},\$

・ロト ・日本 ・モート ・モート

Theorem

For any bounded subset H of a Banach space E we have:

$$\mathsf{ck}(H) \leq \mathsf{k}(H) \leq \gamma(H) \leq 2 \, \mathsf{ck}(H) \leq 2 \, \mathsf{k}(H) \leq 2 \, \omega(H),$$

 $\gamma(H) = \gamma(\operatorname{co}(H))$ and $\omega(H) = \omega(\operatorname{co}(H))$.

For any $x^{**} \in \overline{H}^{w^*}$, there is a sequence $(x_n)_n$ in H such that

$$\|x^{**}-y^{**}\|\leq \gamma(H)$$

for any cluster point y^{**} of $(x_n)_n$ in E^{**} . Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $ck(H), k(H), \gamma(H)$ and $\omega(H)$.

 $\omega(H) := \inf\{\varepsilon > 0 : H \subset K_{\varepsilon} + \varepsilon B_F \text{ and } K_{\varepsilon} \subset X \text{ is } w\text{-compact}\},\$

The result above is the quantitative version of Eberlein-Smulyan and Krein-Smulyan theorems. From $k(co({\cal H}))\leq 2k({\cal H})$ straightforwardly follows Krein-Smulyan theorem.

Other applications to Banach spaces

Theorem (C. Angosto, B.C.)

Let K be a compact space and let H be a uniformly bounded subset of C(K). Let us define

$$\gamma_{\mathcal{K}}(H) := \sup\{|\liminf_{n} \lim_{m} f_m(x_n) - \lim_{m} \lim_{n} f_m(x_n)| : (f_m) \subset H, (x_n) \subset \mathcal{K}\},\$$

assuming the involved limits exist. Then we have

 $\gamma_{\mathcal{K}}(H) \leq \gamma(H) \leq 2\gamma_{\mathcal{K}}(H).$

・ロト ・回ト ・ヨト

Other applications to Banach spaces

Theorem (C. Angosto, B.C.)

Let K be a compact space and let H be a uniformly bounded subset of C(K). Let us define

$$\gamma_{\mathcal{K}}(H) := \sup\{|\liminf_{n} \lim_{m} f_m(x_n) - \lim_{m} \lim_{n} f_m(x_n)| : (f_m) \subset H, (x_n) \subset \mathcal{K}\},\$$

assuming the involved limits exist. Then we have

$$\gamma_{\mathcal{K}}(H) \leq \gamma(H) \leq 2\gamma_{\mathcal{K}}(H).$$

Theorem (C. Angosto, B.C.)

Let E and F be Banach spaces, $T:E\to F$ an operator and $T^*:F^*\to E^*$ its adjoint. Then

$$\gamma(T(B_E)) \leq \gamma(T^*(B_{F^*})) \leq 2\gamma(T(B_E)).$$

<ロ> <同> <同> <同> < 同>

Other applications to Banach spaces

Remark: Astala and Tylli [AT90, Theorem 4]

There is separable Banach space E and a sequence $(T_n)_n$ of operators $T_n: E \to c_0$ such that

$$\omega(T_n^*(B_{\ell^1})) = 1 \quad \text{and} \quad \omega(T_n^{**}(B_E^{**})) \le w(T_n(B_E)) \le \frac{1}{n}$$

Note that this example says, in particular, that there are no constants m, M > 0 such that for any bounded operator $T : E \to F$ we have

 $m\omega(T(B_E)) \le \omega(T^*(B_{F^*})) \le M\omega(T(B_E)).$

Corollary

 γ and ω are not equivalent measures of weak noncompactness, namely there is no N > 0 such that for any Banach space and any bounded set $H \subset E$ we have

 $\omega(H) \leq N\gamma(H).$

イロト イヨト イヨト イヨト

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (Z^X, τ_p) we define

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{Z^X}, C(X, Z)).$$

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then, for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{e \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2\operatorname{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4\operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then

$$\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{d}(\overline{H}^{Z^X}, C(X, Z)) \stackrel{(b)}{\leq} \operatorname{3ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} \operatorname{5ck}(H).$$

イロン イヨン イヨン イヨン

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (Z^X, τ_p) we define

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{Z^X}, C(X, Z)).$$

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then, for any $f \in \overline{H}^{ZX}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{e \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2\operatorname{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4\operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{d}(\overline{H}^{Z^X}, C(X, Z)) \stackrel{(b)}{\leq} 3\mathsf{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5\mathsf{ck}(H).$$

For the particular case ck(H) = 0 we obtain all known results about compactness in $C_p(X)$ spaces.

The results for $B_1(X)$...

 $\hat{d} \leq \hat{d} \leq M\hat{d}$

 If X topological space, (Z, d) a metric and f ∈ Z^X and ε > 0;

< • > < • > <

Э

The results for $B_1(X)$...

 $\hat{d} \leq \hat{d} \leq M\hat{d}$

- If X topological space, (Z, d) a metric and f ∈ Z^X and ε > 0;
- **2** f is ε -fragmented if for every non empty subset $F \subset X$ there exist an open subset $U \subset X$ such that $U \cap F \neq \emptyset$ and diam $(f(U \cap F)) \leq \varepsilon$;

< 177 ▶

The results for $B_1(X)$...

 $\hat{d} \leq \hat{d} \leq M\hat{d}$

- If X topological space, (Z, d) a metric and $f \in Z^X$ and $\varepsilon > 0$;
- 2 f is ε-fragmented if for every non empty subset F ⊂ X there exist an open subset U ⊂ X such that U ∩ F ≠ Ø and diam(f(U ∩ F)) ≤ ε;

Definition

If X topological space, (Z,d) a metric and $f \in Z^X$. We define:

 $frag(f) := inf\{\varepsilon > 0 : f \text{ is } \varepsilon \text{-fragmented}\}\$

・ロト ・回ト ・ヨト

The starting point...our goals C(K) spaces: a taste for simple things Applications to Banach spaces Other applications and extensions

Quantitative version of a Rosenthal's result

Theorem (C. Angosto, I. Namioka and B.C.)

If X is a complete metric space, E a Banach space and $f \in E^X$ then

$$\frac{1}{2}\operatorname{frag}(f) \leq d(f, B_1(X, E)) \leq \operatorname{frag}(f).$$

In the particular case $E = \mathbb{R}$ we precisely have

$$d(f,B_1(X)) = \frac{1}{2}\operatorname{frag}(f).$$

Quantitative version of a Rosenthal's result

Theorem (C. Angosto, I. Namioka and B.C.)

If X is a complete metric space, E a Banach space and $f \in E^X$ then

$$\frac{1}{2}\operatorname{frag}(f) \leq d(f, B_1(X, E)) \leq \operatorname{frag}(f).$$

In the particular case $E = \mathbb{R}$ we precisely have

$$d(f,B_1(X)) = \frac{1}{2}\operatorname{frag}(f).$$

Theorem (C. Angosto, I. Namioka and B.C.)

Let X be a Polish space, E a Banach space and H a $\tau_p\text{-relatively compact}$ subset of $E^X.$ Then

$$\operatorname{ck}(H) \leq \hat{d}(\overline{H}^{E^{X}}, B_{1}(X, E)) \leq 2\operatorname{ck}(H).$$

In the particular case when $E = \mathbb{R}$ we have

$$\hat{d}(\overline{H}^{\mathbb{R}^X}, B_1(X)) = \operatorname{ck}(H).$$

Quantitative version of a Rosenthal's result

< 🗗 ▶

-≣->

Distances to spaces of measurable functions

- (Ω, Σ, μ) is a complete probability space and $(E, \| \|)$ is a Banach space.
- $\Sigma^+ = \{B \in \Sigma : \mu(B) > 0\}$ and $\Sigma^+_A = \{B \in \Sigma^+ : B \subset A\}.$
- $M(\mu, E)$ strongly measurable functions from Ω to E.

イロト イヨト イヨト イヨト

Distances to spaces of measurable functions

- (Ω, Σ, μ) is a complete probability space and $(E, \| \ \|)$ is a Banach space.
- $\Sigma^+ = \{B \in \Sigma : \mu(B) > 0\}$ and $\Sigma^+_A = \{B \in \Sigma^+ : B \subset A\}.$
- $M(\mu, E)$ strongly measurable functions from Ω to E.

Index of strong measurability

Given $f \in E^{\Omega}$, we define

 $\mathsf{meas}(f) := \inf\{\varepsilon > 0 : \forall A \in \Sigma^+, \exists B \in \Sigma_A^+ \text{ such that } \mathsf{osc}(f|_B) < \varepsilon\}$

イロン イヨン イヨン イヨン
The starting point...our goals
 C(K) spaces: a taste for simple things

 The results
 Applications to Banach spaces

 References
 Other applications and extensions

Distances to spaces of measurable functions

- (Ω, Σ, μ) is a complete probability space and $(E, \| \|)$ is a Banach space.
- $\Sigma^+ = \{B \in \Sigma : \mu(B) > 0\}$ and $\Sigma^+_A = \{B \in \Sigma^+ : B \subset A\}.$
- $M(\mu, E)$ strongly measurable functions from Ω to E.

Index of strong measurability

Given $f \in E^{\Omega}$, we define

$$\mathsf{meas}(f) := \mathsf{inf}\{\varepsilon > 0 : \forall A \in \Sigma^+, \exists B \in \Sigma^+_A \text{ such that } \mathsf{osc}(f|_B) < \varepsilon\}$$

Proposition

Let $f \in E^{\Omega}$. Then:

$$d(f, M(\mu; E)) \leq \operatorname{meas}(f) \leq 2d(f; M(\mu; X)).$$

Moreover, if $E = \mathbb{R}$, then

$$d(f, M(\mu; X)) = \frac{1}{2} \operatorname{meas}(f).$$

References

K. Astala and H. O. Tylli, Seminorms related to weak compactness and to Tauberian operators, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 367–375. MR MR1027789 (91b:47016)
J. Bourgain, D. H. Fremlin, and M. Talagrand, <i>Pointwise compact sets of Baire-measurable functions</i> , Amer. J. Math. 100 (1978), no. 4, 845–886. MR 80b:54017
B. Cascales, V. Kadets, and J. Rodríguez, Measurable selectors and set-valued pettis integral in non-separable banach spaces, Submitted, 2007.
B. Cascales, V. Kadets, and J. Rodríguez, The Pettis integral for multi-valued functions via single-valued ones, J. Math. Anal. Appl. 332 (2007), no. 1, 1–10.
B. Cascales and J. Rodríguez, <i>Birkhoff integral for multi-valued functions</i> , J. Math. Anal. Appl. 297 (2004), no. 2, 540–560, Special issue dedicated to John Horváth. MR 2088679 (2005f:26021)
B. Cascales and J. Rodríguez, <i>The Birkhoff integral and the property of Bourgain</i> , Math. Ann. 331 (2005), no. 2, 259–279. MR 2115456
J. E. Jayne, J. Orihuela, A. J. Pallarés, and G. Vera, <i>σ-fragmentability of multivalued maps and selection theorems</i> , J. Funct. Anal. 117 (1993), no. 2, 243–273. MR 94m:46023
J. Orihuela, <i>Pointwise compactness in spaces of continuous functions</i> , J. London Math. Soc. (2) 36 (1987), no. 1, 143–152. MR 88f:46058

・ロト ・回ト ・ヨト ・ヨト

Thanks to all people who made us feel at home!!!

Scientific Committee

Universidad de Almería

- El Amin Kaidi Lhachmi
- Juan Carlos Navarro Pascual

Universidad de Cádiz

- Antonio Aizpuru Tomás
- Fernando León Saavedra

Universidad de Granada

- Juan Francisco Mena Jurado
- Rafael Payá Albert
- Ángel Rodríguez Palacios
- M^a Victoria Velasco Collado

Universidad de Huelva

- Cándido Piñeiro Gómez
- Ramón Jaime Rodríguez Álvarez

- Universidad de Jaén
 - Miguel Marano Calzolari
 - Francisco Roca Rodríguez
- Universidad de Málaga
 - Daniel Girela Álvarez
 - Francisco Javier Martín Reyes
- Universidad Pablo de Olavide
 - Antonio Villar Notario
- Universidad de Sevilla
 - Santiago Díaz Madrigal
 - Tomás Domínguez Benavides

(日) (四) (三) (三) (三)

- 20

- Carlos Pérez Moreno
- Luis Rodríguez Piazza

Local Organizing Committee

- Universidad de Huelva
 - Juan Manuel Delgado Sánchez
 - Begoña Marchena González
 - Enrique Serrano Aguilar
- Universidad de Sevilla
 - José Antonio Prado Bassas
 - Victoria Martín Márquez

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

(日) (四) (三) (三) (三)

<ロ> (四) (四) (日) (日) (日)

・ロト ・四ト ・ヨト ・ヨト

(日) (월) (분) (분)

・ロト ・四ト ・ヨト ・ヨト

(日) (월) (분) (분)

▲日▶ ▲圖▶ ▲画▶ ▲画▶ ▲国▼

æ

æ

æ

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

< □ > < □ > < □ > < □ > < □ > < □ >

(日) (部) (注) (注)

(ロ) (部) (E) (E)

・ロト ・ 日下・ ・ ヨト・・

< □ > < □ > < □ > < □ > < □ > < □ >

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

