A new look at compactness via distances to function spaces

B. Cascales

Universidad de Murcia http://webs.um.es/beca

Huelva, September 3-7, 2007
III International Course of Mathematical Analysis Andalucia

The co－authors

囯 W．Marciszesky，M．Raja and B．Cascales，Distance to spaces of continuous functions，Topology Appl． 153 （2006）， 2303－2319．
C．Angosto and B．Cascales，Measures of weak noncompactness in Banach spaces，Topology Appl．（2007）．

囯 C．Angosto and B．Cascales，The quantitative difference between countable compactness and compactness，Submitted， 2007.

围 C．Angosto，I．Namioka and B．Cascales，Distances to spaces of Baire one functions，Submitted， 2007.
(1) The starting point. . . our goals
(2) The results

- $C(K)$ spaces: a taste for simple things
- Applications to Banach spaces
- Other applications and extensions
(3) References

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem..
Rev. Mat. Iberoamericana 21 (2005), no. 1, 237-248..

- A. S. Granero.

An extension of Krein-Šmulian theorem.
Rev. Mat. Iberoamericana 22 (2005), no. 1, 93-110.

- A. S. Granero, P. Hájek, and V. Montesinos Santalucía.

Convexity and w^{*}-compactness in Banach spaces. Math. Ann., 328, 4 (2004), 625-631.

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem
Rev. \sqrt{M} Main result

- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then Rev. N
- A. S. (

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 2 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

Conves
Math.

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem
Rev. 1 Main result

- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then Rev. N
- A. S. (

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 2 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

Conve)
Math.

- closures are weak*-closures taken in the bidual $E^{* *}$;

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem
Rev. 1 Main result

- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then Rev. N
- A. S. (

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 2 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

Conves
Math.

- closures are weak*-closures taken in the bidual $E^{* *}$;
- $\widehat{\mathrm{d}}(A, E):=\sup \{d(a, E): a \in A\}$ for $A \subset E^{* *}$;

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem
Rev. Main result

- A. S. (Let E be a Banach space and let $H \subset E$ be a bounded An ext subset of E. Then Rev. N
- A. S. (

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 2 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

Conves
Math.

- closures are weak*-closures taken in the bidual $E^{* *}$;
- $\widehat{\mathrm{d}}(A, E):=\sup \{d(a, E): a \in A\}$ for $A \subset E^{* *}$;
- $\widehat{\mathrm{d}}(A, E)=0$ iff $A \subset E$. Hence the inequality implies Krein's theorem (if H is relatively weakly compact then $\mathrm{co}(H)$ is weakly compact.)

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem..
Rev. Mat. Iberoamericana 21 (2005), no. 1, 237-248..

- A. S. Granero.

An extension of Krein-Šmulian theorem.
Rev. Mat. Iberoamericana 22 (2005), no. 1, 93-110.

- A. S. Granero, P. Hájek, and V. Montesinos Santalucía.

Convexity and w^{*}-compactness in Banach spaces. Math. Ann., 328, 4 (2004), 625-631.

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem..
Rev. Mat. Iberoamericana 21 (2005), no. 1, 237-248..

- A. S. Granero.

An exte Main result Rev. M

- Let E be a Banach space and let $H \subset E^{* *}$ be a
- A. S. G bounded subset of $E^{* *}$. Then
Convex Math.

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 5 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

The starting point. . .

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.

A quantitative version of Krein's Theorem..
Rev. Mat. Iberoamericana 21 (2005), no. 1, 237-248..

- A. S. Granero.

An exte Main result

- A. S. G

Convex Math. ,

- Let E be a Banach space and let $H \subset E^{* *}$ be a bounded subset of $E^{* *}$. Then

$$
\widehat{\mathrm{d}}(\overline{\operatorname{co}(H)}, E) \leq 5 \widehat{\mathrm{~d}}(\bar{H}, E),
$$

- Some of the constant involved are sharp.

...our goal

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};

...our goal

$\hat{d} \leq \hat{d} \leq 5 \hat{d}$

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};

...our goal

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};
- To quantify some other classical results about compactness in $C(X)$ or $B_{1}(X)$.
$\hat{d} \leq \hat{d} \leq 5 \hat{d}$

...our goal

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};
- To quantify some other classical results about compactness in $C(X)$ or $B_{1}(X)$.
$\hat{\mathrm{d}} \leq \hat{\mathrm{d}} \leq M \hat{\mathrm{~d}}$

...our goal

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};
- To quantify some other classical results about compactness in $C(X)$ or $B_{1}(X)$.

tools

- new reading of the classical;

$$
\hat{\mathrm{d}} \leq \hat{\mathrm{d}} \leq M \hat{\mathrm{~d}}
$$

...our goal

...goals

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};
- To quantify some other classical results about compactness in $C(X)$ or $B_{1}(X)$.
tools
- new reading of the classical;
- for $C(X)$ we use double limits used by Grothendieck;
$\hat{\mathrm{d}} \leq \hat{\mathrm{d}} \leq M \hat{\mathrm{~d}}$

...our goal

...goals

$\hat{\mathrm{d}} \leq \mathrm{d} \leq M \hat{\mathrm{~d}}$

- To take the results where (I think!) they belong i.e. to the context of $C(K)$ and \mathbb{R}^{K} spaces endowed with τ_{p};
- To quantify some other classical results about compactness in $C(X)$ or $B_{1}(X)$.
tools
- new reading of the classical;
- for $C(X)$ we use double limits used by Grothendieck;
- for $B_{1}(X)$ we use the notions of fragmentability and σ-fragmentability of functions.

Distances vs. oscillations

B. Cascales

Distances vs. oscillations

B. Cascales

Distances vs. oscillations

B. Cascales

Distances vs. oscillations

Theorem

Let Y be a normal space ${ }^{\text {a }}$. If $f \in \mathbb{R}^{Y}$ is bounded, then

$$
d\left(f, C_{b}(Y)\right)=\frac{1}{2} \operatorname{osc}(f)
$$

$$
{ }^{2}\left[\operatorname{osc}(f)=\sup _{x \in Y} \operatorname{osc}(f, x)\right]
$$

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then

$$
d\left(f, C_{b}(Y)\right)=\frac{1}{2} \operatorname{osc}(f) .
$$

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then

$$
d\left(f, C_{b}(Y)\right)=\frac{1}{2} \operatorname{osc}(f) .
$$

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then

$$
d\left(f, C_{b}(Y)\right)=\frac{1}{2} \operatorname{osc}(f)
$$

(1) It is easy to check that

$$
d\left(f, C_{b}(Y)\right) \geq \operatorname{osc}(f) / 2
$$

(2) For $x \in Y, \mathscr{U}_{x}$ family of neighb.

$$
\begin{aligned}
& \operatorname{osc}(f)=\inf _{U \in \mathscr{U}_{x}} \sup _{y, z \in U}(f(y)-f(z)) \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U} f(y)-\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)
\end{aligned}
$$

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then

$$
d\left(f, C_{b}(Y)\right)=\frac{1}{2} \operatorname{osc}(f)
$$

(1) It is easy to check that

$$
d\left(f, C_{b}(Y)\right) \geq \operatorname{osc}(f) / 2
$$

(2) For $x \in Y, \mathscr{U}_{x}$ family of neighb.

$$
\begin{aligned}
& \operatorname{osc}(f)=\inf _{U \in \mathscr{U}_{x}} \sup _{y, z \in U}(f(y)-f(z)) \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U} f(y)-\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)
\end{aligned}
$$

(3)

$$
\begin{aligned}
f_{2}(x) & :=\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)+\frac{\operatorname{osc}(f)}{2} \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U}-\frac{\operatorname{osc}(f)}{2}=: f_{1}(x)
\end{aligned}
$$

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then

$$
d\left(f, C_{b}(Y)\right)=\frac{1}{2} \operatorname{osc}(f)
$$

- $S\left(f_{2}\right)=\left\{(x, y): y \geq f_{2}(x)\right\}$

(1) It is easy to check that

$$
d\left(f, C_{b}(Y)\right) \geq \operatorname{osc}(f) / 2
$$

(2) For $x \in Y, \mathscr{U}_{x}$ family of neighb.

$$
\begin{aligned}
& \operatorname{osc}(f)=\inf _{U \in \mathscr{U}_{x}} \sup _{y, z \in U}(f(y)-f(z)) \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U} f(y)-\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)
\end{aligned}
$$

(3)

$$
\begin{aligned}
f_{2}(x) & :=\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)+\frac{\operatorname{osc}(f)}{2} \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U}-\frac{\operatorname{osc}(f)}{2}=: f_{1}(x)
\end{aligned}
$$

Distances vs.oscillations

Theorem

Let Y be a normal space. If $f \in \mathbb{R}^{Y}$ is bounded, then

$$
d\left(f, C_{b}(Y)\right)=\frac{1}{2} \operatorname{osc}(f)
$$

$$
<^{S\left(f_{2}\right)=\left\{(x, y): y \geq f_{2}(x)\right\}}
$$

(1) It is easy to check that

$$
d\left(f, C_{b}(Y)\right) \geq \operatorname{osc}(f) / 2
$$

(2) For $x \in Y, \mathscr{U}_{x}$ family of neighb.

$$
\begin{aligned}
& \operatorname{osc}(f)=\inf _{U \in \mathscr{U}_{x}} \sup _{y, z \in U}(f(y)-f(z)) \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U} f(y)-\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)
\end{aligned}
$$

(3)

$$
\begin{aligned}
f_{2}(x) & :=\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)+\frac{\operatorname{osc}(f)}{2} \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U}-\frac{\operatorname{osc}(f)}{2}=: f_{1}(x)
\end{aligned}
$$

(4) Squeeze h between f_{2} and f_{1} and

$$
d\left(f, C_{b}(Y)\right)=\|f-h\|_{\infty}=\operatorname{osc}(f) / 2
$$

Quantitative Grothendieck charact. of τ_{p}-compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \leq \hat{\mathrm{d}}\left({\left.\overline{H^{\mathbb{R}^{K}}}, C(K)\right) \leq \gamma(H) \leq 2 \mathrm{ck}(H) . . ~}_{\text {. }}\right.
$$

Quantitative Grothendieck charact. of τ_{p}-compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \leq \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{\kappa}}, C(K)\right) \leq \gamma(H) \leq 2 \mathrm{ck}(H) .
$$

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}} \overline{\left\{h_{n}: n>m\right\}} \overline{\mathbb{R}}^{\mathbb{R}^{K}}, C(K)\right)
$$

Quantitative Grothendieck charact. of τ_{p}-compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \leq \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \leq \gamma(H) \leq 2 \operatorname{ck}(H)
$$

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}} \overline{\left\{h_{n}: n>m\right\}} \mathbb{R}^{K}, C(K)\right)
$$

$\gamma(H):=\sup \left\{\left|\lim _{n} \lim _{m} h_{m}\left(x_{n}\right)-\lim _{m} \lim _{n} h_{m}\left(x_{n}\right)\right|:\left(h_{m}\right) \subset H,\left(x_{n}\right) \subset K\right\}$,
assuming the involved limits exist.

Quantitative Grothendieck charact. of τ_{p}-compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \leq \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{\kappa}}, C(K)\right) \leq \gamma(H) \leq 2 \mathrm{ck}(H) .
$$

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}} \overline{\left\{h_{n}: n>m\right\}} \mathbb{R}^{\mathbb{R}^{K}}, C(K)\right)
$$

$\gamma(H):=\sup \left\{\left|\lim _{n} \lim _{m} h_{m}\left(x_{n}\right)-\lim _{m} \lim _{n} h_{m}\left(x_{n}\right)\right|:\left(h_{m}\right) \subset H,\left(x_{n}\right) \subset K\right\}$, assuming the involved limits exist.

If H is relatively countably compact in $C(K)$ then $\operatorname{ck}(H)=0$

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\mathrm{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H) .
$$

B. Cascales Compactness+Distances

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H) .
$$

(b)

B. Cascales Compactness+Distances

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then
$\operatorname{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)$.
(b)

- in $\gamma(H)$ replace sequences by nets.

B. Cascales

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then
$\operatorname{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)$.
(b)

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.

B. Cascales

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \mathrm{d}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H) .
$$

(b)

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x) ;
$$

B. Cascales

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.

B. Cascales

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}

B. Cascales

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

B. Cascales
 Compactness+Distances

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

- Hence $\operatorname{osc}^{*}(f, x)=\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=|z-f(x)| \leq \gamma(H)$;

B. Cascales Compactness+Distances

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

- Hence $\operatorname{osc}^{*}(f, x)=\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=|z-f(x)| \leq \gamma(H)$;
- In particular $\operatorname{osc}(f, x) \leq 2 \gamma(H)$ for every $x \in K$;

B. Cascales Compactness + Distances

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

- Hence $\operatorname{osc}^{*}(f, x)=\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=|z-f(x)| \leq \gamma(H)$;
- In particular osc $(f, x) \leq 2 \gamma(H)$ for every $x \in K$;
- $d(f, C(K)))=\frac{1}{2} \sup _{x \in K} \operatorname{osc}(f, x) \leq \gamma(H)$.

B. Cascales Compactness+Distances

Theorem

If K is a compact topological space and H is a uniformly bounded subset of $C(K)$, then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\mathrm{d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2 \mathrm{ck}(H)
$$

- in $\gamma(H)$ replace sequences by nets.
- Pick $f \in \bar{H}^{\mathbb{R}^{K}}$ and fix $x \in K$.
- Take a net $\left(x_{\alpha}\right) \rightarrow x$ in K such that

$$
\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=\inf _{U} \sup _{y \in U}|f(y)-f(x)|=: \operatorname{osc}^{*}(f, x)
$$

- Take a net in $H\left(f_{\beta}\right) \rightarrow f$ in \mathbb{R}^{K}.
- Assume (we can!) $f\left(x_{\alpha}\right) \rightarrow z$ in \mathbb{R}
- We get

$$
\begin{gathered}
\lim _{\alpha} \lim _{\beta} f_{\beta}\left(x_{\alpha}\right)=\lim _{\alpha} f\left(x_{\alpha}\right)=z \\
\lim _{\beta} \lim _{\alpha} f_{\beta}\left(x_{\alpha}\right)=\lim _{\beta} f_{\beta}(x)=f(x)
\end{gathered}
$$

- Hence $\operatorname{osc}^{*}(f, x)=\lim _{\alpha}\left|f\left(x_{\alpha}\right)-f(x)\right|=|z-f(x)| \leq \gamma(H)$;
- In particular osc $(f, x) \leq 2 \gamma(H)$ for every $x \in K$;
- $d(f, C(K)))=\frac{1}{2} \sup _{x \in K} \operatorname{osc}(f, x) \leq \gamma(H)$.

B. Cascales Compactness+Distances

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^{K} we have that

$$
\gamma(H)=\gamma(\operatorname{co}(H)),
$$

and as a consequence we obtain for $H \subset C(K)$ that

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 2 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{1}
\end{equation*}
$$

and in the general case $H \subset \mathbb{R}^{K}$

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 5 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{2}
\end{equation*}
$$

B. Cascales Compactness+Distances

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^{K} we have that

$$
\gamma(H)=\gamma(\operatorname{co}(H)),
$$

and as a consequence we obtain for $H \subset C(K)$ that

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 2 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{1}
\end{equation*}
$$

and in the general case $H \subset \mathbb{R}^{K}$

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 5 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{2}
\end{equation*}
$$

(1) $\left.\hat{\mathrm{d}}\left(\overline{\operatorname{co}(H)}{ }^{\mathbb{R}^{K}}\right), C(K)\right) \leq \gamma(\operatorname{co}(H))=\gamma(H) \leq 2 \operatorname{ck}(H) \leq 2 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right)$

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^{K} we have that

$$
\gamma(H)=\gamma(\operatorname{co}(H))
$$

and as a consequence we obtain for $H \subset C(K)$ that

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 2 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{1}
\end{equation*}
$$

and in the general case $H \subset \mathbb{R}^{K}$

$$
\begin{equation*}
\left.\left.\hat{\mathrm{d}}(\overline{\operatorname{co}(H)})^{\mathbb{R}^{K}}\right), C(K)\right) \leq 5 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right) \tag{2}
\end{equation*}
$$

(1) $\left.\hat{\mathrm{d}}\left(\overline{\operatorname{co}(H)}{ }^{\mathbb{R}^{K}}\right), C(K)\right) \leq \gamma(\operatorname{co}(H))=\gamma(H) \leq 2 \operatorname{ck}(H) \leq 2 \hat{\mathrm{~d}}\left(\bar{H}^{\mathbb{R}^{K}}, C(K)\right)$
(2) When $H \subset \mathbb{R}^{K}$, we approximate H by some set in $C(K)$, then use (1) and 5 appears as a simple

$$
5=2 \times 2+1
$$

Distances to spaces of affine continuous functions

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } K \text { is compact convex } \\
& \text { subset of a l.c.s. and } \\
& f \in \mathscr{A}(K) \text { then } \\
& d(f, C(K))=d\left(f, \mathscr{A}^{C}(K)\right) .
\end{aligned}
$$

Distances to spaces of affine continuous functions

Theorem

If K is compact convex
subset of a l.c.s. and
$f \in \mathscr{A}(K)$ then
$d(f, C(K))=d\left(f, \mathscr{A}^{C}(K)\right)$.
(1) It is easy to check that $d\left(f, \mathscr{A}^{C}(K)\right) \geq \operatorname{osc}(f) / 2$.

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$
d(f, C(K))=d\left(f, \mathscr{A}^{C}(K)\right) .
$$

(1) It is easy to check that

$$
d\left(f, \mathscr{A}^{C}(K)\right) \geq \operatorname{osc}(f) / 2
$$

(2) For $x \in Y, \mathscr{U}_{x}$ family of neighb.

$$
\begin{aligned}
\delta & >\operatorname{osc}(f)=\inf _{U \in \mathscr{U}_{x}} \sup _{y, z \in U}(f(y)-f(z)) \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U} f(y)-\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)
\end{aligned}
$$

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$
d(f, C(K))=d\left(f, \mathscr{A}^{C}(K)\right) .
$$

(1) It is easy to check that

$$
d\left(f, \mathscr{A}^{C}(K)\right) \geq \operatorname{osc}(f) / 2
$$

(2) For $x \in Y, \mathscr{U}_{x}$ family of neighb.

$$
\begin{aligned}
\delta & >\operatorname{osc}(f)=\inf _{U \in \mathscr{U}_{x}} \sup _{y, z \in U}(f(y)-f(z)) \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U} f(y)-\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)
\end{aligned}
$$

(3)

$$
\begin{aligned}
f_{2}(x):= & \sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)+\frac{\delta}{2} \\
& >\inf _{U \in \mathscr{U}_{x}} \sup _{y \in U}-\frac{\delta}{2}=: f_{1}(x)
\end{aligned}
$$

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$
d(f, C(K))=d\left(f, \mathscr{A}^{C}(K)\right) .
$$

f_{2} l. s. convex

(1) It is easy to check that

$$
d\left(f, \mathscr{A}^{C}(K)\right) \geq \operatorname{osc}(f) / 2
$$

(2) For $x \in Y, \mathscr{U}_{x}$ family of neighb.

$$
\begin{aligned}
\delta & >\operatorname{osc}(f)=\inf _{U \in \mathscr{U}_{x}} \sup _{y, z \in U}(f(y)-f(z)) \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U} f(y)-\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)
\end{aligned}
$$

(3)

$$
\begin{aligned}
f_{2}(x):= & \sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)+\frac{\delta}{2} \\
& >\inf _{U \in \mathscr{U}_{x}} \sup _{y \in U}-\frac{\delta}{2}=: f_{1}(x)
\end{aligned}
$$

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$
d(f, C(K))=d\left(f, \mathscr{A}^{C}(K)\right) .
$$

f_{2} l. s. convex

f_{1} u. s. concave
(1) It is easy to check that

$$
d\left(f, \mathscr{A}^{C}(K)\right) \geq \operatorname{osc}(f) / 2
$$

(2) For $x \in Y, \mathscr{U}_{x}$ family of neighb.

$$
\begin{aligned}
\delta & >\operatorname{osc}(f)=\inf _{U \in \mathscr{U}_{x}} \sup _{y, z \in U}(f(y)-f(z)) \\
& \geq \inf _{U \in \mathscr{U}_{x}} \sup _{y \in U} f(y)-\sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)
\end{aligned}
$$

(3)

$$
\begin{aligned}
f_{2}(x):= & \sup _{U \in \mathscr{U}_{x}} \inf _{z \in U} f(z)+\frac{\delta}{2} \\
& >\inf _{U \in \mathscr{U}_{x}} \sup _{y \in U}-\frac{\delta}{2}=: f_{1}(x)
\end{aligned}
$$

(4) Squeeze h between f_{2} and f_{1} and $\|f-h\|_{\infty} \leq \delta / 2$.

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$
d(f, C(K))=d\left(f, \mathscr{A}^{C}(K)\right) .
$$

f_{2} l. s. convex

f_{1} u. s. concave

Corollary

Let X be a Banach space and let $B_{X^{*}}$ be the closed unit ball in the dual X^{*} endowed with the w^{*}-topology. Let $i: X \rightarrow X^{* *}$ and $j: X^{* *} \rightarrow \ell_{\infty}\left(B_{X^{*}}\right)$ be the canonical embedding. Then, for every $x^{* *} \in X^{* *}$ we have:

$$
d\left(x^{* *}, i(X)\right)=d\left(j\left(x^{* *}\right), C\left(B_{X^{*}}\right)\right) .
$$

B. Cascales

Measures of weak noncompactness

Definition

Given a bounded subset H of a Banach space E we define:

$$
\gamma(H):=\sup \left\{\left|\lim _{n} \lim _{m} f_{m}\left(x_{n}\right)-\lim _{m} \lim _{n} f_{m}\left(x_{n}\right)\right|:\left(f_{m}\right) \subset B_{E^{*}},\left(x_{n}\right) \subset H\right\},
$$

assuming the involved limits exist,

$$
\left.\begin{array}{rl}
\operatorname{ck}(H) & :=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}}\left\{h_{n}: n>m\right\}\right. \\
w^{*}
\end{array}, E\right),
$$

where the w^{*}-closures are taken in $E^{* *}$ and the distance d is the usual inf distance for sets associated to the natural norm in $E^{* *}$.

Relationship between measures of weak noncompactness

Theorem

For any bounded subset H of a Banach space E we have:

$$
\begin{gathered}
\mathrm{ck}(H) \leq \mathrm{k}(H) \leq \gamma(H) \leq 2 \mathrm{ck}(H) \leq 2 \mathrm{k}(H) \\
\gamma(H)=\gamma(\operatorname{co}(H))
\end{gathered}
$$

For any $x^{* *} \in \bar{H}^{w^{*}}$, there is a sequence $\left(x_{n}\right)_{n}$ in H such that

$$
\left\|x^{* *}-y^{* *}\right\| \leq \gamma(H)
$$

for any cluster point $y^{* *}$ of $\left(x_{n}\right)_{n}$ in $E^{* *}$. Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $\mathrm{ck}(H), \mathrm{k}(H), \gamma(H)$

Relationship between measures of weak noncompactness

Theorem

For any bounded subset H of a Banach space E we have:

$$
\begin{gathered}
\mathrm{ck}(H) \leq \mathrm{k}(H) \leq \gamma(H) \leq 2 \mathrm{ck}(H) \leq 2 \mathrm{k}(H) \\
\gamma(H)=\gamma(\mathrm{co}(H))
\end{gathered}
$$

For any $x^{* *} \in \bar{H}^{w^{*}}$, there is a sequence $\left(x_{n}\right)_{n}$ in H such that

$$
\left\|x^{* *}-y^{* *}\right\| \leq \gamma(H)
$$

for any cluster point $y^{* *}$ of $\left(x_{n}\right)_{n}$ in $E^{* *}$. Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $\mathrm{ck}(H), \mathrm{k}(H), \gamma(H)$

$$
\omega(H):=\inf \left\{\varepsilon>0: H \subset K_{\varepsilon}+\varepsilon B_{E} \text { and } K_{\varepsilon} \subset X \text { is w-compact }\right\}
$$

Relationship between measures of weak noncompactness

Theorem

For any bounded subset H of a Banach space E we have:

$$
\begin{gathered}
\mathrm{ck}(H) \leq \mathrm{k}(H) \leq \gamma(H) \leq 2 \mathrm{ck}(H) \leq 2 \mathrm{k}(H) \leq 2 \omega(H), \\
\gamma(H)=\gamma(\operatorname{co}(H)) \text { and } \omega(H)=\omega(\operatorname{co}(H)) .
\end{gathered}
$$

For any $x^{* *} \in \bar{H}^{w^{*}}$, there is a sequence $\left(x_{n}\right)_{n}$ in H such that

$$
\left\|x^{* *}-y^{* *}\right\| \leq \gamma(H)
$$

for any cluster point $y^{* *}$ of $\left(x_{n}\right)_{n}$ in $E^{* *}$. Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $\mathrm{ck}(H), \mathrm{k}(H), \gamma(H)$ and $\omega(H)$.

$$
\omega(H):=\inf \left\{\varepsilon>0: H \subset K_{\varepsilon}+\varepsilon B_{E} \text { and } K_{\varepsilon} \subset X \text { is w-compact }\right\}
$$

Relationship between measures of weak noncompactness

Theorem

For any bounded subset H of a Banach space E we have:

$$
\begin{gathered}
\mathrm{ck}(H) \leq \mathrm{k}(H) \leq \gamma(H) \leq 2 \mathrm{ck}(H) \leq 2 \mathrm{k}(H) \leq 2 \omega(H), \\
\gamma(H)=\gamma(\operatorname{co}(H)) \text { and } \omega(H)=\omega(\operatorname{co}(H)) .
\end{gathered}
$$

For any $x^{* *} \in \bar{H}^{w^{*}}$, there is a sequence $\left(x_{n}\right)_{n}$ in H such that

$$
\left\|x^{* *}-y^{* *}\right\| \leq \gamma(H)
$$

for any cluster point $y^{* *}$ of $\left(x_{n}\right)_{n}$ in $E^{* *}$. Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $\mathrm{ck}(H), \mathrm{k}(H), \gamma(H)$ and $\omega(H)$.

$$
\omega(H):=\inf \left\{\varepsilon>0: H \subset K_{\varepsilon}+\varepsilon B_{E} \text { and } K_{\varepsilon} \subset X \text { is w-compact }\right\}
$$

The result above is the quantitative version of Eberlein-Smulyan and Krein-Smulyan theorems. From $\mathrm{k}(\mathrm{co}(H)) \leq 2 \mathrm{k}(H)$ straightforwardly follows Krein-Smulyan theorem.

Other applications to Banach spaces

Theorem (C. Angosto, B.C.)

Let K be a compact space and let H be a uniformly bounded subset of $C(K)$. Let us define

$$
\gamma_{K}(H):=\sup \left\{\left|\lim _{n} \lim _{m} f_{m}\left(x_{n}\right)-\lim _{m} \lim _{n} f_{m}\left(x_{n}\right)\right|:\left(f_{m}\right) \subset H,\left(x_{n}\right) \subset K\right\}
$$

assuming the involved limits exist. Then we have

$$
\gamma_{K}(H) \leq \gamma(H) \leq 2 \gamma_{K}(H) .
$$

Other applications to Banach spaces

Theorem (C. Angosto, B.C.)

Let K be a compact space and let H be a uniformly bounded subset of $C(K)$. Let us define

$$
\gamma_{K}(H):=\sup \left\{\left|\lim _{n} \lim _{m} f_{m}\left(x_{n}\right)-\lim _{m} \lim _{n} f_{m}\left(x_{n}\right)\right|:\left(f_{m}\right) \subset H,\left(x_{n}\right) \subset K\right\},
$$

assuming the involved limits exist. Then we have

$$
\gamma_{K}(H) \leq \gamma(H) \leq 2 \gamma_{K}(H)
$$

Theorem (C. Angosto, B.C.)

Let E and F be Banach spaces, $T: E \rightarrow F$ an operator and $T^{*}: F^{*} \rightarrow E^{*}$ its adjoint. Then

$$
\gamma\left(T\left(B_{E}\right)\right) \leq \gamma\left(T^{*}\left(B_{F^{*}}\right)\right) \leq 2 \gamma\left(T\left(B_{E}\right)\right) .
$$

Other applications to Banach spaces

Remark: Astala and Tylli [AT90, Theorem 4]

There is separable Banach space E and a sequence $\left(T_{n}\right)_{n}$ of operators $T_{n}: E \rightarrow c_{0}$ such that

$$
\omega\left(T_{n}^{*}\left(B_{\ell^{1}}\right)\right)=1 \quad \text { and } \quad \omega\left(T_{n}^{* *}\left(B_{E}^{* *}\right)\right) \leq w\left(T_{n}\left(B_{E}\right)\right) \leq \frac{1}{n}
$$

Note that this example says, in particular, that there are no constants $m, M>0$ such that for any bounded operator $T: E \rightarrow F$ we have

$$
m \omega\left(T\left(B_{E}\right)\right) \leq \omega\left(T^{*}\left(B_{F^{*}}\right)\right) \leq M \omega\left(T\left(B_{E}\right)\right) .
$$

Corollary

γ and ω are not equivalent measures of weak noncompactness, namely there is no $N>0$ such that for any Banach space and any bounded set $H \subset E$ we have

$$
\omega(H) \leq N \gamma(H)
$$

The results for $C(X)$

If X is a topological space, (Z, d) a metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$ we define

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}}{\overline{\left\{h_{n}: n>m\right\}}}^{Z^{X}}, C(X, Z)\right)
$$

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then, for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \mathrm{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \mathrm{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.

Theorem (C. Angosto, B.C.)
Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{d}\left(\bar{H}^{Z}, C(X, Z)\right) \stackrel{(b)}{\leq} 3 \operatorname{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5 \operatorname{ck}(H)
$$

The results for $C(X)$

If X is a topological space, (Z, d) a metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$ we define

$$
\operatorname{ck}(H):=\sup _{\left(h_{n}\right)_{n} \subset H} d\left(\bigcap_{m \in \mathbb{N}}{\overline{\left\{h_{n}: n>m\right\}}}^{Z^{X}}, C(X, Z)\right)
$$

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then, for any $f \in \bar{H}^{Z}$ there exists a sequence $\left(f_{n}\right)_{n}$ in H such that

$$
\sup _{x \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2 \operatorname{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4 \operatorname{ck}(H)
$$

for any cluster point g of $\left(f_{n}\right)$ in Z^{X}.

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z, d) a separable metric space and H a relatively compact subset of the space $\left(Z^{X}, \tau_{p}\right)$. Then

$$
\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{d}\left(\bar{H}^{Z}, C(X, Z)\right) \stackrel{(b)}{\leq} 3 \operatorname{ck}(H)+2 \hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5 \operatorname{ck}(H)
$$

For the particular case $\mathrm{ck}(H)=0$ we obtain all known results about compactness in $C_{p}(X)$ spaces.

The results for $B_{1}(X) \ldots$

$\hat{\mathrm{d}} \leq \mathrm{d} \leq M \hat{\mathrm{~d}}$
(1) If X topological space, (Z, d) a metric and $f \in Z^{X}$ and $\varepsilon>0$;

The results for $B_{1}(X) \ldots$

$\hat{\mathrm{d}} \leq \mathrm{d} \leq M \hat{\mathrm{~d}}$
(1) If X topological space, (Z, d) a metric and $f \in Z^{X}$ and $\varepsilon>0$;
(2) f is ε-fragmented if for every non empty subset $F \subset X$ there exist an open subset $U \subset X$ such that $U \cap F \neq \emptyset$ and $\operatorname{diam}(f(U \cap F)) \leq \varepsilon$;

The results for $B_{1}(X) \ldots$

$$
\hat{\mathrm{d}} \leq \hat{\mathrm{d}} \leq M \hat{\mathrm{~d}}
$$

(1) If X topological space, (Z, d) a metric and $f \in Z^{X}$ and $\varepsilon>0$;
(2) f is ε-fragmented if for every non empty subset $F \subset X$ there exist an open subset $U \subset X$ such that $U \cap F \neq \emptyset$ and $\operatorname{diam}(f(U \cap F)) \leq \varepsilon$;

Definition

If X topological space, (Z, d) a metric and $f \in Z^{X}$. We define:

$$
\operatorname{frag}(f):=\inf \{\varepsilon>0: f \text { is } \varepsilon \text {-fragmented }\}
$$

Quantitative version of a Rosenthal's result

Theorem (C. Angosto, I. Namioka and B.C.)

If X is a complete metric space, E a Banach space and $f \in E^{X}$ then

$$
\frac{1}{2} \operatorname{frag}(f) \leq d\left(f, B_{1}(X, E)\right) \leq \operatorname{frag}(f)
$$

In the particular case $E=\mathbb{R}$ we precisely have

$$
d\left(f, B_{1}(X)\right)=\frac{1}{2} \operatorname{frag}(f) .
$$

Quantitative version of a Rosenthal's result

Theorem (C. Angosto, I. Namioka and B.C.)

If X is a complete metric space, E a Banach space and $f \in E^{X}$ then

$$
\frac{1}{2} \operatorname{frag}(f) \leq d\left(f, B_{1}(X, E)\right) \leq \operatorname{frag}(f)
$$

In the particular case $E=\mathbb{R}$ we precisely have

$$
d\left(f, B_{1}(X)\right)=\frac{1}{2} \operatorname{frag}(f) .
$$

Theorem (C. Angosto, I. Namioka and B.C.)

Let X be a Polish space, E a Banach space and H a τ_{p}-relatively compact subset of E^{X}. Then

$$
\operatorname{ck}(H) \leq \hat{d}\left(\bar{H}^{E^{X}}, B_{1}(X, E)\right) \leq 2 \operatorname{ck}(H)
$$

In the particular case when $E=\mathbb{R}$ we have

$$
\hat{d}\left(\bar{H}^{\mathbb{R}^{X}}, B_{1}(X)\right)=\operatorname{ck}(H)
$$

Quantitative version of a Rosenthal's result

Distances to spaces of measurable functions

- (Ω, Σ, μ) is a complete probability space and $(E,\| \|)$ is a Banach space.
- $\Sigma^{+}=\{B \in \Sigma: \mu(B)>0\}$ and $\Sigma_{A}^{+}=\left\{B \in \Sigma^{+}: B \subset A\right\}$.
- $M(\mu, E)$ strongly measurable functions from Ω to E.

Distances to spaces of measurable functions

- (Ω, Σ, μ) is a complete probability space and $(E,\| \|)$ is a Banach space.
- $\Sigma^{+}=\{B \in \Sigma: \mu(B)>0\}$ and $\Sigma_{A}^{+}=\left\{B \in \Sigma^{+}: B \subset A\right\}$.
- $M(\mu, E)$ strongly measurable functions from Ω to E.

Index of strong measurability

Given $f \in E^{\Omega}$, we define

$$
\operatorname{meas}(f):=\inf \left\{\varepsilon>0: \forall A \in \Sigma^{+}, \exists B \in \Sigma_{A}^{+} \text {such that } \operatorname{osc}\left(\left.f\right|_{B}\right)<\varepsilon\right\}
$$

Distances to spaces of measurable functions

- (Ω, Σ, μ) is a complete probability space and $(E,\| \|)$ is a Banach space.
- $\Sigma^{+}=\{B \in \Sigma: \mu(B)>0\}$ and $\Sigma_{A}^{+}=\left\{B \in \Sigma^{+}: B \subset A\right\}$.
- $M(\mu, E)$ strongly measurable functions from Ω to E.

Index of strong measurability

Given $f \in E^{\Omega}$, we define

$$
\operatorname{meas}(f):=\inf \left\{\varepsilon>0: \forall A \in \Sigma^{+}, \exists B \in \Sigma_{A}^{+} \text {such that } \operatorname{osc}\left(\left.f\right|_{B}\right)<\varepsilon\right\}
$$

Proposition

Let $f \in E^{\Omega}$. Then:

$$
d(f, M(\mu ; E)) \leq \operatorname{meas}(f) \leq 2 d(f ; M(\mu ; X))
$$

Moreover, if $E=\mathbb{R}$, then

$$
d(f, M(\mu ; X))=\frac{1}{2} \operatorname{meas}(f)
$$

References

K. Astala and H. O. Tylli, Seminorms related to weak compactness and to Tauberian operators, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 367-375. MR MR1027789 (91b:47016)
J. Bourgain, D. H. Fremlin, and M. Talagrand, Pointwise compact sets of Baire-measurable functions, Amer. J. Math. 100 (1978), no. 4, 845-886. MR 80b:54017
B. Cascales, V. Kadets, and J. Rodríguez, Measurable selectors and set-valued pettis integral in non-separable banach spaces, Submitted, 2007.
B. Cascales, V. Kadets, and J. Rodríguez, The Pettis integral for multi-valued functions via single-valued ones, J. Math. Anal. Appl. 332 (2007), no. 1, 1-10.
B. Cascales and J. Rodríguez, Birkhoff integral for multi-valued functions, J. Math. Anal. Appl. 297 (2004), no. 2, 540-560, Special issue dedicated to John Horváth. MR 2088679 (2005f:26021)
B. Cascales and J. Rodríguez, The Birkhoff integral and the property of Bourgain, Math. Ann. 331 (2005), no. 2, 259-279. MR 2115456
J. E. Jayne, J. Orihuela, A. J. Pallarés, and G. Vera, σ-fragmentability of multivalued maps and selection theorems, J. Funct. Anal. 117 (1993), no. 2, 243-273. MR 94m:46023
J. Orihuela, Pointwise compactness in spaces of continuous functions, J. London Math. Soc. (2) 36 (1987), no. 1, 143-152. MR 88f:46058

B. Cascales Compactness+Distances

Thanks to all people who made us feel at home!!!

Scientific Committee

- Universidad de Almería
- El Amin Kaidi Lhachmi
- Juan Carlos Navarro Pascual
- Universidad de Cádiz
- Antonio Aizpuru Tomás
- Fernando León Saavedra
- Universidad de Granada
- Juan Francisco Mena Jurado
- Rafael Payá Albert
- Ángel Rodríguez Palacios
- $\mathrm{M}^{\text {a }}$ Victoria Velasco Collado
- Universidad de Huelva
- Cándido Piñeiro Gómez
- Ramón Jaime Rodríguez Álvarez
- Universidad de Jaén
- Miguel Marano Calzolari
- Francisco Roca Rodríguez
- Universidad de Málaga
- Daniel Girela Álvarez
- Francisco Javier Martín Reyes
- Universidad Pablo de Olavide
- Antonio Villar Notario
- Universidad de Sevilla
- Santiago Díaz Madrigal
- Tomás Domínguez Benavides
- Carlos Pérez Moreno
- Luis Rodríguez Piazza

Local Organizing Committee

- Universidad de Huelva
- Juan Manuel Delgado Sánchez
- Begoña Marchena González
- Enrique Serrano Aguilar
- Universidad de Sevilla
- José Antonio Prado Bassas
- Victoria Martín Márquez

